

ANNUAL WATER QUALITY REPORT

Reporting Year 2024

Presented By
Hurst Creek M.U.D.

Este reporte incluye informacion importante sobre el agua para tomar. Para asistencia en espanol, favor de llamar al telefono (512) 261-6281.

PWS ID#: TX2270172

Our Commitment

We are pleased to present to you this year's annual water quality report. This report is a snapshot of last year's water quality covering all testing performed between January 1 and December 31, 2024. Included are details about your source of water, what it contains, and how it compares to standards set by regulatory agencies. Our constant goal is to provide you with a safe and dependable supply of drinking water. We want you to understand the efforts we make to continually improve the water treatment process and protect our water resources. We are committed to ensuring the quality of your water and providing you with this information because informed customers are our best allies.

Where Does My Water Come From?

Our drinking water is obtained from Lake Travis, located in the Colorado River watershed. Mansfield Dam was completed in 1941 and is a part of the Highland Lakes chain, which has a capacity of 369 billion gallons. Our raw (untreated) water is purchased through a wholesale contract with the Lower Colorado River Authority. More information on Lake Travis can be accessed at lcra.org.

Community Participation

You are invited to participate in our public forum and voice your concerns about your drinking water. We meet the third Monday of each month at 9:00 a.m. Please call (512) 261-6281 for more information.

Water Loss Audit

In the water loss audit submitted to the Texas Water Development Board during the year covered by this report, our system lost an estimated 29,479,268 gallons of water. If you have any questions about the water loss audit, please call (512) 261-6281.

Think Before You Flush!

Flushing unused or expired medicines can be harmful to your drinking water. Properly disposing of unused or expired medication helps protect you and the environment. Keep medications out of our waterways by disposing responsibly. To find a convenient drop-off location near you, please visit <https://bit.ly/3IeRyXy>.

Important Health Information

You may be more vulnerable than the general population to certain microbial contaminants, such as *Cryptosporidium*, in drinking water. Infants; some elderly; or immunocompromised persons such as those undergoing chemotherapy for cancer, those who have undergone organ transplants, those who are undergoing treatment with steroids, and people with HIV/AIDS or other immune system disorders can be particularly at risk from infections. You should seek advice about drinking water from your physician or health-care provider. Additional guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* are available from the Safe Drinking Water Hotline at (800) 426-4791.

Water Conservation Tips

You can play a role in conserving water and save yourself money in the process by becoming conscious of the amount of water your household is using and looking for ways to use less whenever you can. It is not hard to conserve water. Here are a few tips:

- Automatic dishwashers use three to six gallons for every cycle, regardless of how many dishes are loaded. So get a run for your money and load it to capacity.
- Turn off the tap when brushing your teeth.
- Check every faucet in your home for leaks. Just a slow drip can waste 15 to 20 gallons a day. Fix it and you can save almost 6,000 gallons per year.
- Check your toilets for leaks by putting a few drops of food coloring in the tank. Watch for a few minutes to see if the color shows up in the bowl. It is not uncommon to lose up to 100 gallons a day from an invisible toilet leak. Fix it and you save more than 30,000 gallons a year.
- Use your water meter to detect hidden leaks. Simply turn off all taps and water-using appliances. Then check the meter after 15 minutes. If it moved, you have a leak.

Source Water Assessment

The Texas Commission on Environmental Quality (TCEQ), the state water regulatory agency, completed a source water assessment (SWA) for Lake Travis in 2003. The SWA is a report on the susceptibility of public drinking water systems to 227 drinking water contaminants. The results include a high, medium, or low rating for each contaminant, as well as a list of potential sources of contamination. A copy of this report is available at the Hurst Creek Municipal Utility District office at 102 Trophy Drive, The Hills. You can access more information at https://www.tceq.texas.gov/drinkingwater/SWAP/swsa_results.html.

QUESTIONS?

For more information about this report, or for any questions relating to your drinking water, please call Kurt Pendleton, Assistant General Manager, at (512) 261-6281.

Substances That Could Be in Water

To ensure that tap water is safe to drink, the U.S. Environmental Protection Agency (U.S. EPA) prescribes regulations limiting the amount of certain contaminants in water provided by public water systems. U.S. Food and Drug Administration regulations establish limits for contaminants in bottled water, which must provide the same protection for public health. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of these contaminants does not necessarily indicate that the water poses a health risk.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it can acquire naturally occurring minerals, in some cases radioactive material, and substances resulting from the presence of animals or from human activity. Substances that may be present in source water include:

Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, or wildlife.

Inorganic contaminants, such as salts and metals, which can be naturally occurring or may result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.

Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.

Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production and which may also come from gas stations, urban stormwater runoff, and septic systems.

Radioactive Contaminants, which can be naturally occurring or may be the result of oil and gas production and mining activities.

Contaminants may be found in drinking water that may cause taste, color, or odor problems. These types of problems are not necessarily causes for health concerns. For more information on taste, odor, or color of drinking water, please contact our business office. For more information about contaminants and potential health effects, call the U.S. EPA Safe Drinking Water Hotline at (800) 426-4791.

Lead in Home Plumbing

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Hurst Creek M.U.D. is responsible for providing high-quality drinking water but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline at (800) 426-4791 or epa.gov/safewater/lead.

To address lead in drinking water, public water systems were required to develop and maintain an inventory of service line materials by October 16, 2024. Developing an inventory and identifying the location of lead service lines (LSL) is the first step for beginning LSL replacement and protecting public health. The lead service inventory may be viewed in our office at 102 Trophy Drive, The Hills. Please contact us if you would like more information about the inventory or any lead sampling that has been done.

Test Results

Our water is monitored for many different kinds of substances on a very strict sampling schedule, and the water we deliver must meet specific health standards. Here, we only show those substances that were detected in our water (a complete list of all our analytical results is available upon request). Remember that detecting a substance does not mean the water is unsafe to drink; our goal is to keep all detects below their respective maximum allowed levels.

The state recommends monitoring for certain substances less than once per year because the concentrations of these substances do not change frequently. In these cases, the most recent sample data is included, along with the year in which the sample was taken.

The percentage of total organic carbon (TOC) removal was measured each month, and the system met all TOC removal requirements set (unless a TOC violation is noted in the Violation column).

REGULATED SUBSTANCES							
Substance (Unit of Measure)	Year Sampled	MCL [MRDL]	MCLG [MRDLG]	Amount Detected	Range Low-High	Violation	Typical Source
Barium (ppm)	2024	2	2	0.0677	NA	No	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits
Chloramines (ppm)	2024	[4]	[4]	2.91	1.50–3.70	No	Water additive used to control microbes
Combined Radium (pCi/L)	2021	5	0	1.5	1.5–1.5	No	Erosion of natural deposits
Cyanide (ppb)	2024	200	200	0.01	NA	No	Discharge from steel/metal factories; discharge from plastic and fertilizer factories
Haloacetic Acids [HAAs] (ppb)	2024	60	NA	14.4	10.8–18.0	No	By-product of drinking water disinfection
Nitrate (ppm)	2024	10	10	0.06	NA	No	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits
Total Organic Carbon [TOC] (ppm)	2024	TT ¹	NA	3.52	3.17–3.78	No	Naturally present in the environment
TTHMs [total trihalomethanes] (ppb)	2024	80	NA	35.5	31–44.1	No	By-product of drinking water disinfection
Turbidity ² (NTU)	2024	TT	NA	0.12	NA	No	Soil runoff
Turbidity (lowest monthly percent of samples meeting limit)	2024	TT = 95% of samples meet the limit	NA	100	NA	No	Soil runoff

Tap water samples were collected for lead and copper analyses from sample sites throughout the community

Substance (Unit of Measure)	Year Sampled	Amount Detected (90th %ile)		Range Low-High	Sites Above AL/Total Sites		Violation	Typical Source
		AL	MCLG		AL/Total Sites	Sites Above AL/Total Sites		
Copper (ppm)	2023	1.3	1.3	0.0984	NA	0/10	No	Corrosion of household plumbing systems; erosion of natural deposits
Lead (ppb)	2023	15	0	1	NA	0/10	No	Corrosion of household plumbing systems; erosion of natural deposits

SECONDARY SUBSTANCES							
Substance (Unit of Measure)	Year Sampled	SCL	MCLG	Amount Detected	Range Low-High	Violation	Typical Source
Aluminum (ppb)	2024	200	NA	136	NA	No	Erosion of natural deposits; residual from some surface water treatment processes
Chloride (ppm)	2024	300	NA	60	NA	No	Runoff/leaching from natural deposits
Copper (ppm)	2024	1.0	NA	0.0627	NA	No	Corrosion of household plumbing systems; erosion of natural deposits
Fluoride (ppm)	2024	2.0	NA	0.22	NA	No	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories
pH (units)	2024	>7.0	NA	8.24	8.02–8.48	No	Naturally occurring
Sulfate (ppm)	2024	300	NA	31	NA	No	Runoff/leaching from natural deposits; industrial wastes
Total Dissolved Solids [TDS] (ppm)	2024	1,000	NA	312	NA	No	Runoff/leaching from natural deposits

UNREGULATED SUBSTANCES³

Substance (Unit of Measure)	Year Sampled	Amount Detected	Range Low-High	Typical Source
Bromodichloromethane (ppb)	2024	9.9	NA	By-product of drinking water disinfection
Bromoform (ppb)	2024	2.4	NA	By-product of drinking water disinfection
Calcium (ppm)	2024	34.6	NA	Naturally occurring
Chloroform (ppb)	2024	9.5	NA	By-product of drinking water disinfection
Dibromochloromethane (ppb)	2024	9.0	NA	By-product of drinking water disinfection
Nickel (ppm)	2024	0.0013	NA	Naturally occurring in the environment
Sodium (ppm)	2024	35.8	NA	Erosion of natural deposits; by-products of oil field activity
Total Alkalinity (ppm)	2024	150	NA	Naturally occurring
Total Hardness (ppm)	2024	181	NA	Naturally occurring
Zinc (ppm)	2024	0.0071	NA	NA

Definitions

90th %ile: The levels reported for lead and copper represent the 90th percentile of the total number of sites tested. The 90th percentile is equal to or greater than 90% of our lead and copper detections.

AL (Action Level): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

MCL (Maximum Contaminant Level): The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

MCLG (Maximum Contaminant Level Goal): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

MRDL (Maximum Residual Disinfectant Level): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

MRDLG (Maximum Residual Disinfectant Level Goal): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

NA: Not applicable.

NTU (Nephelometric Turbidity Units): Measurement of the clarity, or turbidity, of water. Turbidity in excess of 5 NTU is just noticeable to the average person.

¹The value reported under Amount Detected for TOC is the lowest ratio of percentage of TOC actually removed to the percentage of TOC required to be removed. A value of greater than 1 indicates that the water system is in compliance with TOC removal requirements. A value of less than 1 indicates a violation of the TOC removal requirements.

²Turbidity is a measure of the cloudiness of the water. It is monitored because it is a good indicator of the effectiveness of the filtration system.

³Unregulated contaminants are those for which the U.S. EPA has not established drinking water standards. The purpose of unregulated contaminant monitoring is to assist the U.S. EPA in determining the occurrence of unregulated contaminants in drinking water and whether future regulation is warranted.

pCi/L (picocuries per liter): A measure of radioactivity.

ppb (µg/L) (parts per billion): One part substance per billion parts water (or micrograms per liter).

ppm (mg/L) (parts per million): One part substance per million parts water (or milligrams per liter).

SCL (Secondary Contaminant Level): These standards are developed to protect aesthetic qualities of drinking water and are not health based.

TT (Treatment Technique): A required process intended to reduce the level of a contaminant in drinking water.

